

Wideband Distributed Amplifier, DIE, 1 to 20 GHz ENGDA00161

Typical Applications

- Military EW and SIGINT
- Receiver or Transmitter
- Telecom Infrastructure
- Space Hybrids
- Test and Measurement Systems

Description

The ENGDA00161 is a wideband, linear GaAs MMIC distributed amplifier die which operates from 1 to 20 GHz. The design is 50 ohm matched and does not require external bias coil inductors. The amplifier delivers 10-dB gain with > 1 dB positive gain slope across the band over a wide drain voltage range (3 V to 9 V). Noise figure is < 3.0 dB across 5 – 18 GHz for bias voltages between 4 and 8 V. The amplifier has gold backside metallization and is designed to be silver epoxy attached. The RF interconnects are designed to account for wire bonds and external microstrip flares for optimal integrated return loss. No additional ground interconnects are required.

Features

- Wideband performance
- High linearity, 8-dBm IIP3 at 6 V; 10-dBm IIP3 at 8 V
- < 3.0 dB noise figure, 5 18 GHz
- 10-dB gain, positive gain slope
- 3 V to 9 V bias operation
- In/out return loss > 16 dB typical
- Size
 - 2.93 x 2.00 x 0.1 mm
 - 0.115 x 0.079 x 0.004 inch

Functional Block Diagram

Distributed Amplifier, 1 to 20 GHz

Electrical Specifications, T = 25 °C, VD = 6.0 V, 32 mA; 3 V, 4 mA

Parameter	Min	Тур	Max	Units
Frequency Range		GHz		
Gain	8	10 + slope		dB
Noise Figure		< 3.0 (5-18 GHz)		dB
Input Return Loss	14	18		dB
Output Return Loss	14	19		dB
Output P1dB	7	10		dBm
Output IP3	16	18		dBm
Supply Current	30	30 - 80	100	mA
Thermal Resistance		180		degC/W

Recommended Operating Conditions Absolute Maximum Ratings

Parameter	Min	Тур	Max	Units	Parameter	Max level
VD	3	6	9	V	Drain Voltage, VD	10 V
ID	30	70	100	mA	Gate Voltage, VG	-3 V
VG	-0.2	-0.4	-0.6	V	Active Gate Term., Vterm	5 V
VTerm	2	3	4	V	RF Input Power	+24 dBm
Iterm	2	4	6	mA	Channel temperature	+160 °C
					Operating Temperature	-55 °C to +100 °C
					Storage Temperature	-65 °C to +150 °C

RF Data with wire bonds and external microstrip flare pads

Gain and Input / Output Return Loss (dB); 6 V, 32 mA, -0.38 Vg Active gate termination bias: 2.5 - 3 V, 4 mA; 25 °C

Measured – solid lines; model – dashed lines, with bond wires & flares

Measured and Modeled Gain are within 0.5 dB across 1 – 20 GHz

ENGIN-IC, Inc. 1721 W. PLANO PKWY STE 121 Plano, TX 75075 Phone 972-332-5000 www.engin-ic.com

RF Data with wire bonds and external microstrip flare pads

Noise figure (dB, at 25 C): VD = 4.0 – 6.0 V, IDS = 40 mA; 25 °C; 3 V, 4 mA

Noise figure varies by only ± 0.1 dB for drain voltages between 4 and 8 V; at 3 V bias, noise figure increases slightly in Ku-band

RF Data with wire bonds and external microstrip flare pads

IIP3 > 10 dBm to 19 GHz (OIP3 > 20 dBm); 8 V, 42 mA bias; 3 V, 4 mA active gate term.; 25 °C

IIP3 > 8 dBm to 20 GHz (OIP3 > 18 dBm); 6 V, 32 mA bias

ENGDA00161

Distributed Amplifier, 1 to 20 GHz

Outline Drawing

- 1. All dimensions are given in both μm and mils. Substrate thickness: 100 μm (0.004").
- 2. Backside metallization is gold.
- 3. Bond pad metallization is gold.

ENGDA00161

Distributed Amplifier, 1 to 20 GHz

External I/O Microstrip Flare Dimensions (on 5-mil Alumina) and I/O Bond Wire Inductances for Optimum Insertion and Return Loss Performance

S-parameters can be supplied at DIE level such that optimal flare dimensions can be made for the substrate connection medium used (if different from 5-mil Alumina).

- 1. To achieve bond wire inductance noted, bond the number of wires shown in parallel from each external flare to each associated MMIC RF bond pad as shown above.
- 2. Gold Wire details:
 - a) Diameter: 25.4 μm (1 mil) b) Spacing: 127 μm (5 mils) typical
 - c) Height above Ground: 200 μm (~ 8 mils typical); wedge bonds
- 3. Wire length is total length if the wire were made perfectly straight.

ENGIN-IC, Inc. 1721 W. PLANO PKWY STE 121 Plano, TX 75075 Phone 972-332-5000 www.engin-ic.com

Assembly Guidelines

The backside metallization is RF/DC ground. Attachment should be accomplished with electrically and thermally conductive epoxy only. This device supports high frequency performance. Care should be made to follow the wire bond dimensions as shown in the flare diagram.

Application Circuit and Turn-on Procedure

- Note 1: Internal blocking capacitors on RF in/out ports (P1 and P2)
- Note 2: Gate voltage (VG) must be applied prior to drain voltage (VD) Drain voltage (VD) must be removed prior to gate voltage (VG)
- Note 3: Performance is optimized with VD set in the 4 to 8 V range
- Note 4: Vterm (active gate termination) voltage should normally be near 3 V